Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells.

نویسندگان

  • Tomas Leijtens
  • I-Kang Ding
  • Tommaso Giovenzana
  • Jason T Bloking
  • Michael D McGehee
  • Alan Sellinger
چکیده

We present the synthesis and device characterization of new hole transport materials (HTMs) for application in solid-state dye-sensitized solar cells (ssDSSCs). In addition to possessing electrical properties well suited for ssDSSCs, these new HTMs have low glass transition temperatures, low melting points, and high solubility, which make them promising candidates for increased pore filling into mesoporous titania films. Using standard device fabrication methods and Z907 as the sensitizing dye, power conversion efficiencies (PCE) of 2.94% in 2-μm-thick cells were achieved, rivaling the PCE obtained by control devices using the state-of-the-art HTM spiro-OMeTAD. In 6-μm-thick cells, the device performance is shown to be higher than that obtained using spiro-OMeTAD, making these new HTMs promising for preparing high-efficiency ssDSSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials

Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of ...

متن کامل

High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods

In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Contribution from a hole-conducting dye to the photocurrent in solid-state dye-sensitized solar cells.

The hole transporting medium in solid-state dye-sensitized solar cells can be utilized to harvest sunlight. Herein we demonstrate that a triphenylamine-based dye, used as hole-transporting medium, contributes to the photocurrent in a squaraine-sensitized solid-state dye-sensitized solar cell. Steady-state photoluminescence measurements have been used to distinguish between electron transfer and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2012